Search results
Results from the WOW.Com Content Network
Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant- temperature (isothermal ), constant- entropy (isentropic ), and other variations are possible. Such distinctions are especially relevant for gases.
The Poisson's ratio of a stable, isotropic, linear elastic material must be between −1.0 and +0.5 because of the requirement for Young's modulus, the shear modulus and bulk modulus to have positive values. [3] Most materials have Poisson's ratio values ranging between 0.0 and 0.5.
Rule of mixtures. Relation between properties and composition of a compound. The upper and lower bounds on the elastic modulus of a composite material, as predicted by the rule of mixtures. The actual elastic modulus lies between the curves. In materials science, a general rule of mixtures is a weighted mean used to predict various properties ...
For ordinary materials, the bulk compressibility (sum of the linear compressibilities on the three axes) is positive, that is, an increase in pressure squeezes the material to a smaller volume. This condition is required for mechanical stability. [8] However, under very specific conditions, materials can exhibit a compressibility that can be ...
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
Volume viscosity. Volume viscosity (also called bulk viscosity, or second viscosity or, dilatational viscosity) is a material property relevant for characterizing fluid flow. Common symbols are or . It has dimensions (mass / (length × time)), and the corresponding SI unit is the pascal -second (Pa·s).
The third-order Birch–Murnaghan isothermal equation of state is given by = [() / /] {+ (′) [() /]}. where P is the pressure, V 0 is the reference volume, V is the deformed volume, B 0 is the bulk modulus, and B 0 ' is the derivative of the bulk modulus with respect to pressure. The bulk modulus and its derivative are usually obtained from ...
The difference relation allows one to obtain the heat capacity for solids at constant volume which is not readily measured in terms of quantities that are more easily measured. The ratio relation allows one to express the isentropic compressibility in terms of the heat capacity ratio.