Search results
Results from the WOW.Com Content Network
Deoxyribonuclease (DNase, for short) refers to a group of glycoprotein endonucleases which are enzymes that catalyze the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA. The role of the DNase enzyme in cells includes breaking down extracellular DNA (ecDNA) excreted by apoptosis, necrosis, and neutrophil ...
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.
Depiction of the restriction enzyme (endonuclease) HindIII cleaving a double-stranded DNA molecule at a valid restriction site (5'–A|AGCTT–3').. In biochemistry, a nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids.
MUS81/EME1 is a structure specific endonuclease involved in converting interstrand crosslinks to double-strand breaks in a DNA replication-dependent manner. [12] After introduction of a double-strand break, further steps are required to complete the repair process. If a crosslink is not properly repaired it can block DNA replication. [citation ...
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.
One major challenge of using RNA-based enzymes as a therapeutic is the short half-life of the catalytic RNA molecules in the body. To combat this, the 2’ position on the ribose is modified to improve RNA stability. One area of ribozyme gene therapy has been the inhibition of RNA-based viruses.
It acts as a 3’→5’ DNA directed proofreading exonuclease that removes incorrectly incorporated bases during replication. [10] Similarly, in Salmonella typhimurium bacteria, the 3’ to 5’ editing function employed during DNA replication is also encoded by a gene, dnaQ , which specifies a 3’ to 5’ exonuclease subunit, one of the ...
Control of the DNA replication system ensures that the genome is replicated only once per cycle; over-replication induces DNA damage. Deregulation of DNA replication is a key factor in genomic instability during cancer development. [3] This highlights the specificity of DNA synthesis machinery in vivo. Various means exist to artificially ...