Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Downloadable EXCEL program for the determination of the Most Probable Numbers (MPN), their standard deviations, confidence bounds and rarity values according to Jarvis, B., Wilrich, C., and P.-T. Wilrich: Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values.
This can be of use in fitting distributions to empirical data. However, some further well-known distributions are available if the recursion above need only hold for a restricted range of values of k : [ 5 ] for example the logarithmic distribution and the discrete uniform distribution .
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform.
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
In survey methodology, Poisson sampling (sometimes denoted as PO sampling [1]: 61 ) is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample. [1]: 85 [2]
Via the law of total cumulance it can be shown that, if the mean of the Poisson distribution λ = 1, the cumulants of Y are the same as the moments of X 1. [citation needed] Every infinitely divisible probability distribution is a limit of compound Poisson distributions. [1] And compound Poisson distributions is infinitely divisible by the ...
The relevance of the index of dispersion is that it has a value of 1 when the probability distribution of the number of occurrences in an interval is a Poisson distribution. Thus the measure can be used to assess whether observed data can be modeled using a Poisson process. When the coefficient of dispersion is less than 1, a dataset is said to ...