Search results
Results from the WOW.Com Content Network
In molecular biology, the five-prime cap (5′ cap) is a specially altered nucleotide on the 5′ end of some primary transcripts such as precursor messenger RNA.This process, known as mRNA capping, is highly regulated and vital in the creation of stable and mature messenger RNA able to undergo translation during protein synthesis.
The 5′ untranslated region (also known as 5′ UTR, leader sequence, transcript leader, or leader RNA) is the region of a messenger RNA (mRNA) that is directly upstream from the initiation codon. This region is important for the regulation of translation of a transcript by differing mechanisms in viruses, prokaryotes and eukaryotes.
The first step in initiation is formation of the pre-initiation complex, 48S PIC. The small ribosomal subunit and various eukaryotic initiation factors are recruited to the mRNA 5′ TL and to form the 48S PIC complex, which scans 5′ to 3′ along the mRNA transcript, inspecting each successive triplet for a functional start codon.
The 5′-untranslated region (5′-UTR) is a region of a gene which is transcribed into mRNA, and is located at the 5′-end of the mRNA. This region of an mRNA may or may not be translated, but is usually involved in the regulation of translation. The 5′-untranslated region is the portion of the DNA starting from the cap site and extending ...
The PA subunit subsequently cleaves the sequence 10-13 nucleotides from the cap structure via endonuclease activity at the N terminus. [5] The exact cleavage location is dependent both on the distance between the PB2 and the PA of the RdRp (around 50 angstroms or 10-13 nucleotides) and also the sequence of the mRNA.
three prime untranslated region - sequence at the 3' end of messenger RNA that does not code for product polyadenylation - addition of adenosine to the end of a mature mRNA English: Diagramatic structure of a typical human protein coding mRNA including the untranslated regions (UTRs).It is drawn approximately to scale.
When translationally repressed or marked for decay by various mechanisms the 5' cap is bound by the mRNA decapping enzyme DCP2. A host of proteins accompany it including UPF1, UPF2, UPF3A, Dcp1, Dhh1, XRN1, and others. The decapping enzyme removes the 5' cap leading to destruction of the message. [4]
Unlike cap-dependent translation, cap-independent translation does not require a 5' cap to initiate scanning from the 5' end of the mRNA until the start codon. The ribosome can localize to the start site by direct binding, initiation factors, and/or ITAFs (IRES trans-acting factors) bypassing the need to scan the entire 5' UTR .