Search results
Results from the WOW.Com Content Network
3, is a bromine-based oxoanion. A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate (NaBrO 3) and potassium bromate (KBrO 3). Bromates are formed many different ways in municipal drinking water. The most common is the reaction of ozone and bromide: Br − + O 3 → BrO − 3
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).
Ethane can react with the halogens, especially chlorine and bromine, by free-radical halogenation. This reaction proceeds through the propagation of the ethyl radical: [36] Cl 2 → 2 Cl• C 2 H 6 • + Cl• → C 2 H 5 • + HCl C 2 H 5 • + Cl 2 → C 2 H 5 Cl + Cl• Cl• + C 2 H 6 → C 2 H 5 • + HCl
Sodium atoms have 11 electrons, one more than the stable configuration of the noble gas neon. As a result, sodium usually forms ionic compounds involving the Na + cation. [1] Sodium is a reactive alkali metal and is much more stable in ionic compounds. It can also form intermetallic compounds and organosodium compounds.
Since phenols are acidic, they readily react with a strong base like sodium hydroxide to form phenoxide ions. The phenoxide ion will then substitute the –X group in the alkyl halide, forming an ether with an aryl group attached to it in a reaction with an S N 2 mechanism. C 6 H 5 OH + OH − → C 6 H 5 –O − + H 2 O C 6 H 5 –O − + R ...
These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger ...
The mechanism is that the highly reactive hydrogen radicals, oxygen radicals, and hydroxyl radicals react with hydrobromic acid to form less reactive bromine radicals (i.e., free bromine atoms). Bromine atoms may also react directly with other radicals to help terminate the free radical chain-reactions that characterise combustion. [63] [64]
In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications.