Search results
Results from the WOW.Com Content Network
In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It is also referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight. [1]: 2251
Extremely hot stars (such as O- and B-type) emit proportionally more UV radiation than the Sun. Sunlight in space at the top of Earth's atmosphere (see solar constant) is composed of about 50% infrared light, 40% visible light, and 10% ultraviolet light, for a total intensity of about 1400 W/m 2 in vacuum.
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
The immediate effect on life on Earth from a GRB within a few kiloparsecs would only be a short increase in ultraviolet radiation at ground level, lasting from less than a second to tens of seconds. This ultraviolet radiation could potentially reach dangerous levels depending on the exact nature and distance of the burst, but it seems unlikely ...
The term ultraviolet refers to the fact that the radiation is at higher frequency than violet light (and, hence, also invisible to the human eye). Due to absorption by the atmosphere very little reaches Earth's surface. This spectrum of radiation has germicidal properties, as used in germicidal lamps. Ultraviolet B or (UVB) range spans 280 to ...
A typical spectrum of Earth's total outgoing (upwelling) thermal radiation flux under clear-sky conditions, as simulated with MODTRAN. Planck curves are also shown for a range of Earth temperatures. The emissivity of a planet or other astronomical body is determined by the composition and structure of its outer skin.
The stratosphere defines a layer in which temperatures rise with increasing altitude. This rise in temperature is caused by the absorption of ultraviolet radiation (UV) from the Sun by the ozone layer, which restricts turbulence and mixing. Although the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the ...
Ultraviolet, of wavelengths from 10 nm to 200 nm, ionizes air molecules, causing it to be strongly absorbed by air and by ozone (O 3) in particular. Ionizing UV therefore does not penetrate Earth's atmosphere to a significant degree, and is sometimes referred to as vacuum ultraviolet. Although present in space, this part of the UV spectrum is ...