enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    The IEEE standard uses round-to-nearest. Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also ...

  3. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...

  4. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  5. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    If it were not for the 0.5 fractional parts, the round-off errors introduced by the round to nearest method would be symmetric: for every fraction that gets rounded down (such as 0.268), there is a complementary fraction (namely, 0.732) that gets rounded up by the same amount.

  6. Magic number (programming) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(programming)

    The use of unnamed magic numbers in code obscures the developers' intent in choosing that number, [2] increases opportunities for subtle errors (e.g. is every digit correct in 3.14159265358979323846 and can be rounded to 3.14159? [clarification needed] [3]) and makes it more difficult for the program to be adapted and extended in the future. [4]

  7. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Alternative rounding options are also available. IEEE 754 specifies the following rounding modes: round to nearest, where ties round to the nearest even digit in the required position (the default and by far the most common mode) round to nearest, where ties round away from zero (optional for binary floating-point and commonly used in decimal)

  9. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]