Search results
Results from the WOW.Com Content Network
Loop variants are used to guarantee that loops will terminate. A loop invariant is an assertion which must be true before the first loop iteration and remain true after each iteration. This implies that when a loop terminates correctly, both the exit condition and the loop invariant are satisfied.
Some loops can be shown to always terminate or never terminate through human inspection. For example, the following loop will, in theory, never stop. However, it may halt when executed on a physical machine due to arithmetic overflow : either leading to an exception or causing the counter to wrap to a negative value and enabling the loop ...
Fallback nodes are used to find and execute the first child that does not fail. A fallback node will return with a status code of success or running immediately when one of its children returns success or running (see Figure I and the pseudocode below). The children are ticked in order of importance, from left to right.
The rate of mechanical wear is mainly a function of how often a device is activated to make a change. Where wear is a significant concern, the PID loop may have an output deadband to reduce the frequency of activation of the output (valve). This is accomplished by modifying the controller to hold its output steady if the change would be small ...
The loop counter is used to decide when the loop should terminate and for the program flow to continue to the next instruction after the loop. A common identifier naming convention is for the loop counter to use the variable names i , j , and k (and so on if needed), where i would be the most outer loop, j the next inner loop, etc.
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
The goal of loop unwinding is to increase a program's speed by reducing or eliminating instructions that control the loop, such as pointer arithmetic and "end of loop" tests on each iteration; [2] reducing branch penalties; as well as hiding latencies, including the delay in reading data from memory. [3]
A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. [1] It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision ...