Search results
Results from the WOW.Com Content Network
There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quadratically_constrained_quadratic_programming&oldid=108303839"
The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...
Let X be a subset of R n (usually a box-constrained one), let f, g i, and h j be real-valued functions on X for each i in {1, ..., m} and each j in {1, ..., p}, with at least one of f, g i, and h j being nonlinear. A nonlinear programming problem is an optimization problem of the form
Also, the second [] value is less accurate than the 4th value, which is not surprising due to the fact that Aitken's process is best suited for sequences that converge linearly, rather than quadratically, and Heron's method for calculating square roots converges quadratically. [citation needed]
Sequential quadratic programming: A Newton-based method for small-medium scale constrained problems. Some versions can handle large-dimensional problems. Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians.