Search results
Results from the WOW.Com Content Network
A graph of this equation creates an S-shaped curve, which demonstrates how initial population growth is exponential due to the abundance of resources and lack of competition. When factors that limit an organisms growth are not available in constant supply to meet the growing demand, such as RNA and protein amounts in bacteria, the growth of the ...
In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges (,) an -vertex graph can have such that it does not have a subgraph isomorphic to .
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
In graph theory and statistics, a graphon (also known as a graph limit) is a symmetric measurable function : [,] [,], that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models.
The Hayflick limit, or Hayflick phenomenon, is the number of times a normal somatic, differentiated human cell population will divide before cell division stops. [ 1 ] [ 2 ] The concept of the Hayflick limit was advanced by American anatomist Leonard Hayflick in 1961, [ 3 ] at the Wistar Institute in Philadelphia , Pennsylvania.
In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f ( p ) is the (or, in the general case, a ) limit of f ( x ) as x tends to p .
The weighted version of the decision problem was one of Karp's 21 NP-complete problems; [11] Karp showed the NP-completeness by a reduction from the partition problem. The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut.
The existence theorem for limits states that if a category C has equalizers and all products indexed by the classes Ob(J) and Hom(J), then C has all limits of shape J. [1]: §V.2 Thm.1 In this case, the limit of a diagram F : J → C can be constructed as the equalizer of the two morphisms [1]: §V.2 Thm.2