Search results
Results from the WOW.Com Content Network
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by
Dirichlet, P. G. L. (1837), "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält" [Proof of the theorem that every unbounded arithmetic progression, whose first term and common difference are integers without ...
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
3s = 1.. The series 1 / 4 + 1 / 16 + 1 / 64 + 1 / 256 + ⋯ lends itself to some particularly simple visual demonstrations because a square and a triangle both divide into four similar pieces, each of which contains 1 / 4 the area of the original.
For premium support please call: 800-290-4726 more ways to reach us
Skip to main content
The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!