Search results
Results from the WOW.Com Content Network
If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.
An additional condition called "properness" or "radial unboundedness" is required in order to conclude global stability. Global asymptotic stability (GAS) follows similarly. It is easier to visualize this method of analysis by thinking of a physical system (e.g. vibrating spring and mass) and considering the energy of such a system. If the ...
For asymptotic stability, the state is also required to converge to =. A control-Lyapunov function is used to test whether a system is asymptotically stabilizable , that is whether for any state x there exists a control u ( x , t ) {\displaystyle u(x,t)} such that the system can be brought to the zero state asymptotically by applying the ...
A discrete-time input-to-output LTI system is exponentially stable if and only if the poles of its transfer function lie strictly within the unit circle centered on the origin of the complex plane. Systems that are not LTI are exponentially stable if their convergence is bounded by exponential decay .
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
To prove asymptotic stability, either a new Lyapunov candidate function needs to be considered, or LaSalle's invariance principal needs to be applied. I agree. To use a Lyapunov function itself to prove asymptotic stability (without resorting to the invariance principle or Barbalat's Lemma), you have to choose a different function.
Under the validity of this averaging technique, the asymptotic behavior of the original system is captured by the dynamical equation for . In this way, qualitative methods for autonomous dynamical systems may be employed to analyze the equilibria and more complex structures, such as slow manifold and invariant manifolds , as well as their ...
The main idea of terminal sliding mode control evolved out of seminal work on terminal attractors done by Zak in the JPL, and is evoked by the concept of terminal attractors which guarantee finite time convergence of the states. While, in normal sliding mode, asymptotic stability is promised which leads to the convergence of the states to the ...