enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Its complexity can be expressed in an alternative way for very large graphs: when C * is the length of the shortest path from the start node to any node satisfying the "goal" predicate, each edge has cost at least ε, and the number of neighbors per node is bounded by b, then the algorithm's worst-case time and space complexity are both in O(b ...

  3. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    In connected graphs where shortest paths are well-defined (i.e. where there are no negative-length cycles), we may construct a shortest-path tree using the following algorithm: Compute dist( u ), the shortest-path distance from root v to vertex u in G using Dijkstra's algorithm or Bellman–Ford algorithm .

  4. Selection sort - Wikipedia

    en.wikipedia.org/wiki/Selection_sort

    A bidirectional variant of selection sort (called double selection sort or sometimes cocktail sort due to its similarity to cocktail shaker sort) finds both the minimum and maximum values in the list in every pass. This requires three comparisons per two items (a pair of elements is compared, then the greater is compared to the maximum and the ...

  5. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  6. Contraction hierarchies - Wikipedia

    en.wikipedia.org/wiki/Contraction_hierarchies

    The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. [1] Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. [ 2 ]

  7. Selection algorithm - Wikipedia

    en.wikipedia.org/wiki/Selection_algorithm

    Nevertheless, the simplicity of this approach makes it attractive, especially when a highly-optimized sorting routine is provided as part of a runtime library, but a selection algorithm is not. For inputs of moderate size, sorting can be faster than non-random selection algorithms, because of the smaller constant factors in its running time. [4]

  8. Dijkstra–Scholten algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra–Scholten_algorithm

    The Dijkstra–Scholten algorithm (named after Edsger W. Dijkstra and Carel S. Scholten) is an algorithm for detecting termination in a distributed system. [1] [2] The algorithm was proposed by Dijkstra and Scholten in 1980. [3] First, consider the case of a simple process graph which is a tree. A distributed computation which is tree ...

  9. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    It can be solved using Yen's algorithm [3] [4] to find the lengths of all shortest paths from a fixed node to all other nodes in an n-node non negative-distance network, a technique requiring only 2n 2 additions and n 2 comparison, fewer than other available shortest path algorithms need. The running time complexity is pseudo-polynomial, being ...