Search results
Results from the WOW.Com Content Network
SI symbol Name Value SI symbol Name 10 −1 M dM decimolar 10 1 M daM decamolar 10 −2 M cM centimolar 10 2 M hM hectomolar 10 −3 M mM millimolar 10 3 M kM kilomolar 10 −6 M μM micromolar 10 6 M MM megamolar 10 −9 M nM nanomolar 10 9 M GM gigamolar 10 −12 M pM picomolar 10 12 M TM teramolar 10 −15 M fM femtomolar 10 15 M PM petamolar
The mole (symbol mol) is a unit of measurement, the base unit in the International System of Units (SI) for amount of substance, an SI base quantity proportional to the number of elementary entities of a substance.
The joule per mole (symbol: J·mol −1 or J/mol) is the unit of energy per amount of substance in the International System of Units (SI), such that energy is measured in joules, and the amount of substance is measured in moles. It is also an SI derived unit of molar thermodynamic energy defined as the energy equal to one joule in one mole of ...
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Enthalpy change of solution for some selected compounds: hydrochloric acid-74.84 ammonium nitrate +25.69 ammonia-30.50 potassium hydroxide-57.61 caesium hydroxide-71.55 sodium chloride +3.87 potassium chlorate +41.38 acetic acid-1.51 sodium hydroxide-44.50 Change in enthalpy ΔH o in kJ/mol in water at 25°C [2]
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information 3–7×10 −21 J Energy of a van der Waals interaction between atoms (0.02–0.04 eV) [11] [12] 4.1×10 −21 J The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV) [13]