enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    Flow velocity. In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity[1][2] in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed.

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Continuum mechanics. In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  4. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    law of the wall, horizontal velocity near the wall with mixing length model. In fluid dynamics, the law of the wall (also known as the logarithmic law of the wall) states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid ...

  5. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    Thermodynamics. In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Stokes' law is the basis of the falling-sphere viscometer, in which the fluid is stationary in a vertical glass tube. A sphere of known size and density is allowed to descend through the liquid. If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube.

  8. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    e. In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids — liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion).

  9. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Dimension. In physics and engineering, mass flow rate is the rate at which mass of a substance changes over time. Its unit is kilogram per second (kg/s) in SI units, and slug per second or pound per second in US customary units. The common symbol is (ṁ, pronounced "m-dot"), although sometimes μ (Greek lowercase mu) is used.