enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".

  3. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    The polynomial x 2 + 1 = 0 has roots ± i. Any real square matrix of odd degree has at least one real eigenvalue. For example, if the matrix is orthogonal, then 1 or −1 is an eigenvalue. The polynomial + has roots , +,, and thus can be factored as

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...

  5. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...

  6. Budan's theorem - Wikipedia

    en.wikipedia.org/wiki/Budan's_theorem

    In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other.

  7. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity. For instance, it has been observed [ 2 ] that for a root x ℓ + 1 = x ℓ + 2 = ⋯ = x ℓ + d {\displaystyle x_{\ell +1}=x_{\ell +2}=\dots =x_{\ell +d}} with ...

  8. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Rather, the Jordan canonical form of () contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix.

  9. Formal derivative - Wikipedia

    en.wikipedia.org/wiki/Formal_derivative

    For example, if R is the finite field with three elements, the polynomial f ( x ) = x 6 + 1 {\displaystyle f(x)\,=\,x^{6}+1} has no roots in R ; however, its formal derivative ( f ′ ( x ) = 6 x 5 {\displaystyle f'(x)\,=\,6x^{5}} ) is zero since 3 = 0 in R and in any extension of R , so when we pass to the algebraic closure it has a multiple ...