Search results
Results from the WOW.Com Content Network
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .
The HLLE solver (developed by Ami Harten, Peter Lax, Bram van Leer and Einfeldt) is an approximate solution to the Riemann problem, which is only based on the integral form of the conservation laws and the largest and smallest signal velocities at the interface.
The Riemann integral is defined in terms of Riemann sums of functions with respect to tagged partitions of an interval. [21] A tagged partition of a closed interval [a, b] on the real line is a finite sequence
This simplifies the theory and algorithms considerably. The problem of evaluating integrals is thus best studied in its own right. Conversely, the term "quadrature" may also be used for the solution of differential equations: "solving by quadrature" or "reduction to quadrature" means expressing its solution in terms of integrals.
Loosely speaking, the Riemann integral is the limit of the Riemann sums of a function as the partitions get finer. If the limit exists then the function is said to be integrable (or more specifically Riemann-integrable). The Riemann sum can be made as close as desired to the Riemann integral by making the partition fine enough.
A converging sequence of Riemann sums. The number in the upper left is the total area of the blue rectangles. They converge to the definite integral of the function. We are describing the area of a rectangle, with the width times the height, and we are adding the areas together.
Discrete integral calculus is the study of the definitions, properties, and applications of the Riemann sums. The process of finding the value of a sum is called integration . In technical language, integral calculus studies a certain linear operator .
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...