enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A fully connected layer for an image of size 100 × 100 has 10,000 weights for each neuron in the second layer. Convolution reduces the number of free parameters, allowing the network to be deeper. [6] For example, using a 5 × 5 tiling region, each with the same shared weights, requires only 25 neurons.

  4. Easy Java Simulations - Wikipedia

    en.wikipedia.org/wiki/Easy_Java_Simulations

    Web Easy JavaScript Simulation , Easy JavaScript Simulations (EJSS), formerly known as Easy Java Simulations (EJS), is an open-source software tool, part of the Open Source Physics project, designed to create discrete computer simulations.

  5. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-4 was a larger version of LeNet-1 designed to fit the larger MNIST database. It had more feature maps in its convolutional layers, and had an additional layer of hidden units, fully connected to both the last convolutional layer and to the output units. It has 2 convolutions, 2 average poolings, and 2 fully connected layers.

  6. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.

  7. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A bottleneck block [1] consists of three sequential convolutional layers and a residual connection. The first layer in this block is a 1x1 convolution for dimension reduction (e.g., to 1/2 of the input dimension); the second layer performs a 3x3 convolution; the last layer is another 1x1 convolution for dimension restoration.

  8. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).

  9. JavaScript graphics library - Wikipedia

    en.wikipedia.org/wiki/JavaScript_graphics_library

    A JavaScript graphics library is a JavaScript library used to aid in the creation of graphics for either the HTML5 canvas element or SVG. Such a library eases the development and display of graphic elements like particles, motion, animation, plotting, and 3D graphics.