Search results
Results from the WOW.Com Content Network
Logical consequence (also entailment or implication) is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements.
The hearer can now draw the contextual implications that +> Susan needs to be cheered up. +> Peter wants me to ring Susan and cheer her up. If Peter intended the hearer to come to these implications, they are implicated conclusions. Implicated premises and conclusions are the two types of implicatures in the relevance theoretical sense. [51]
Material conditional (also material implication), a logical connective and binary truth function typically interpreted as "If p, then q" Material implication (rule of inference), a logical rule of replacement; Implicational propositional calculus, a version of classical propositional calculus that uses only the material conditional connective
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...
In writing, phrases commonly used as alternatives to P "if and only if" Q include: Q is necessary and sufficient for P, for P it is necessary and sufficient that Q, P is equivalent (or materially equivalent) to Q (compare with material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. [3]
Every use of modus tollens can be converted to a use of modus ponens and one use of transposition to the premise which is a material implication. For example: If P, then Q. (premise – material implication) If not Q, then not P. (derived by transposition) Not Q. (premise) Therefore, not P. (derived by modus ponens)
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P.
Informal logic emphasizes the study of argumentation; formal logic emphasizes implication and inference. Informal arguments are sometimes implicit. The rational structure—the relationship of claims, premises, warrants, relations of implication, and conclusion—is not always spelled out and immediately visible and must be made explicit by ...