Search results
Results from the WOW.Com Content Network
An orbital plane as viewed relative to a plane of reference. An orbital plane can also be seen in relative to conic sections, in which the orbital path is defined as the intersection between a plane and a cone. Parabolic (1) and hyperbolic (3) orbits are escape orbits, whereas elliptical and circular orbits (2) are captive. The orbital plane of ...
The ecliptic or invariable plane for planets, asteroids, comets, etc. within the Solar System, as these bodies generally have orbits that lie close to the ecliptic. The equatorial plane of the orbited body for satellites orbiting with small semi-major axes; The local Laplace plane for satellites orbiting with intermediate-to-large semi-major axes
The heliocentric ecliptic system describes the planets' orbital movement around the Sun, and centers on the barycenter of the Solar System (i.e. very close to the center of the Sun). The system is primarily used for computing the positions of planets and other Solar System bodies, as well as defining their orbital elements.
Trojans are bodies located within another body's gravitationally stable Lagrange points: L 4, 60° ahead in its orbit, or L 5, 60° behind in its orbit. [160] Every planet except Mercury and Saturn is known to possess at least 1 trojan. [161] [162] [163] The Jupiter trojan population is roughly equal to that of the asteroid belt. [164]
The north orbital poles of the Solar System major planets all lie within Draco. [1] The central yellow dot represents the Sun's rotation axis north pole. [citation needed] Jupiter's north orbital pole is colored orange, Mercury's pale blue, Venus's green, Earth's blue, Mars's red, Saturn's magenta, Uranus's grey, and Neptune's lavender.
The Sun, planets, moons and dwarf planets (true color, size to scale, distances not to scale) The following outline is provided as an overview of and topical guide to the Solar System: Solar System – gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly.
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.
The inclination of a planet tells how far above or below an established reference plane its orbit is tilted. In the Solar System, the reference plane is the plane of Earth's orbit, called the ecliptic. For exoplanets, the plane, known as the sky plane or plane of the sky, is the plane perpendicular to the observer's line of sight from Earth. [66]