enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative adversarial network - Wikipedia

    en.wikipedia.org/wiki/Generative_adversarial_network

    For example, a GAN trained on photographs can generate new photographs that look at least superficially authentic to human observers, having many realistic characteristics. Though originally proposed as a form of generative model for unsupervised learning , GANs have also proved useful for semi-supervised learning , [ 2 ] fully supervised ...

  3. Gallium nitride - Wikipedia

    en.wikipedia.org/wiki/Gallium_nitride

    For example, GaN is the substrate that makes violet (405 nm) laser diodes possible, without requiring nonlinear optical frequency doubling. Its sensitivity to ionizing radiation is low (like other group III nitrides), making it a suitable material for solar cell arrays for satellites.

  4. Wasserstein GAN - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_GAN

    The original GAN method is based on the GAN game, a zero-sum game with 2 players: generator and discriminator. The game is defined over a probability space (,,), The generator's strategy set is the set of all probability measures on (,), and the discriminator's strategy set is the set of measurable functions : [,].

  5. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    For example, a language model might assume that doctors and judges are male, and that secretaries or nurses are female, if those biases are common in the training data. [127] Similarly, an image model prompted with the text "a photo of a CEO" might disproportionately generate images of white male CEOs, [128] if trained on a racially biased data ...

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    For example, GPT-3, and its precursor GPT-2, [11] are auto-regressive neural language models that contain billions of parameters, BigGAN [12] and VQ-VAE [13] which are used for image generation that can have hundreds of millions of parameters, and Jukebox is a very large generative model for musical audio that contains billions of parameters. [14]

  7. StyleGAN - Wikipedia

    en.wikipedia.org/wiki/StyleGAN

    A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.

  8. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  9. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.