Search results
Results from the WOW.Com Content Network
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy. Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted, [18] and they both allow the ...
Fastor is a high performance tensor (fixed multi-dimensional array) library for modern C++. GNU Scientific Library [6] GNU Project C, C++ 1996 2.7.1 / 11.2021 Free GPL: General purpose numerical analysis library. Includes some support for linear algebra. IMSL Numerical Libraries: Rogue Wave Software: C, Java, C#, Fortran, Python 1970 many ...
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
JAX is a machine learning framework for transforming numerical functions. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).
Dask Array [16] is a high-level collection that parallelizes array-based workloads and maintains the familiar NumPy API, such as slicing, arithmetic, reductions, mathematics, etc., making it easy for Numpy users to scale up array operations. A Dask array comprises many smaller n-dimensional Numpy arrays and uses a blocked algorithm to enable ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.