Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
For example, an operon is a stretch of DNA that is transcribed to create a contiguous segment of RNA, but contains more than one cistron / gene. The operon is said to be polycistronic, whereas ordinary genes are said to be monocistronic.
The translation table list below follows the numbering and designation by NCBI. [2] Four novel alternative genetic codes were discovered in bacterial genomes by Shulgina and Eddy using their codon assignment software Codetta, and validated by analysis of tRNA anticodons and identity elements; [ 3 ] these codes are not currently adopted at NCBI ...
Multicistronic message is an archaic term for Polycistronic. Monocistronic, bicistronic and tricistronic are also used to describe mRNA with single, double and triple coding areas (exons). Note that the base word cistron is no longer used in genetics, and has been replaced by intron and exon in eukaryotic mRNA. However, the mRNA found in ...
[1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as ...
A structural gene is a gene that codes for any RNA or protein product other than a regulatory factor (i.e. regulatory protein).A term derived from the lac operon, structural genes are typically viewed as those containing sequences of DNA corresponding to the amino acids of a protein that will be produced, as long as said protein does not function to regulate gene expression.
In fact, many prokaryotic genes occur in operons, which are a series of genes that work together to code for the same protein or gene product and are controlled by a single promoter. [2] Bacterial RNA polymerase is made up of four subunits and when a fifth subunit attaches, called the sigma factor (σ-factor), the polymerase can recognize ...
Enhancers are sequences of the genome that are major gene-regulatory elements. Enhancers control cell-type-specific gene expression programs, most often by looping through long distances to come in physical proximity with the promoters of their target genes. [6]