enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. One-shot deviation principle - Wikipedia

    en.wikipedia.org/wiki/One-shot_deviation_principle

    The one-shot deviation principle (also known as single-deviation property [1]) is the principle of optimality of dynamic programming applied to game theory. [2] It says that a strategy profile of a finite multi-stage extensive-form game with observed actions is a subgame perfect equilibrium (SPE) if and only if there exist no profitable single deviation for each subgame and every player.

  3. Pitzer equations - Wikipedia

    en.wikipedia.org/wiki/Pitzer_equations

    Besides the well-known Pitzer-like equations, there is a simple and easy-to-use semi-empirical model, which is called the three-characteristic-parameter correlation (TCPC) model. It was first proposed by Lin et al. [ 22 ] It is a combination of the Pitzer long-range interaction and short-range solvation effect:

  4. Debye–Hückel theory - Wikipedia

    en.wikipedia.org/wiki/Debye–Hückel_theory

    Going towards high dilutions good results have been found using liquid membrane cells, it has been possible to investigate aqueous media 10 −4 M and it has been found that for 1:1 electrolytes (as NaCl or KCl) the Debye–Hückel equation is totally correct, but for 2:2 or 3:2 electrolytes it is possible to find negative deviation from the ...

  5. Specific ion interaction theory - Wikipedia

    en.wikipedia.org/wiki/Specific_ion_interaction...

    Firstly, equilibrium constants are determined at a number of different ionic strengths, at a chosen temperature and particular background electrolyte. The interaction coefficients are then determined by fitting to the observed equilibrium constant values. The procedure also provides the value of K at infinite dilution. It is not limited to ...

  6. Donnan potential - Wikipedia

    en.wikipedia.org/wiki/Donnan_potential

    Donnan potential is the difference in the Galvani potentials [1] which appears as a result of Donnan equilibrium, named after Frederick G. Donnan, which refers to the distribution of ion species between two ionic solutions separated by a semipermeable membrane or boundary. [2]

  7. Reversal potential - Wikipedia

    en.wikipedia.org/wiki/Reversal_potential

    The equilibrium potential for an ion is the membrane potential at which there is no net movement of the ion. [1] [2] [3] The flow of any inorganic ion, such as Na + or K +, through an ion channel (since membranes are normally impermeable to ions) is driven by the electrochemical gradient for that ion.

  8. Gibbs–Donnan effect - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Donnan_effect

    Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]

  9. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    z − = numeric charge number of anion; e = elementary charge, 1.6022 × 10 −19 C; ε 0 = permittivity of free space 4πε 0 = 1.112 × 1010 C 2 /(J·m) r 0 = distance between closest cation [ +ve ] & anion [ -ve ]. n = Born exponent, typically a number between 5 and 12, determined experimentally by measuring the compressibility of the ...