enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Raman_spectroscopy

    Energy-level diagram showing the states involved in Raman spectra. Raman spectroscopy (/ ˈ r ɑː m ən /) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. [1]

  3. Raman scattering - Wikipedia

    en.wikipedia.org/wiki/Raman_scattering

    Raman spectroscopy employs the Raman effect for substances analysis. The spectrum of the Raman-scattered light depends on the molecular constituents present and their state, allowing the spectrum to be used for material identification and analysis. Raman spectroscopy is used to analyze a wide range of materials, including gases, liquids, and ...

  4. Raman optical activity - Wikipedia

    en.wikipedia.org/wiki/Raman_optical_activity

    Raman optical activity spectroscopy is related to Raman spectroscopy and circular dichroism. Recent studies have shown how by using optical vortex light beams, a distinct type of Raman optical activity that is sensitive to the orbital angular momentum of the incident light is manifest. [2]

  5. Coherent anti-Stokes Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Coherent_anti-Stokes_Raman...

    Coherent anti-Stokes Raman spectroscopy, also called Coherent anti-Stokes Raman scattering spectroscopy (CARS), is a form of spectroscopy used primarily in chemistry, physics and related fields. It is sensitive to the same vibrational signatures of molecules as seen in Raman spectroscopy , typically the nuclear vibrations of chemical bonds.

  6. Stimulated Raman spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Stimulated_Raman_spectroscopy

    Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...

  7. Depolarization ratio - Wikipedia

    en.wikipedia.org/wiki/Depolarization_ratio

    A Raman band whose depolarization ratio is less than 0.75 is called a polarized band, and a band with a depolarization ratio equal to or greater than 0.75 is called a depolarized band. [4] [5] For a spherical top molecule in which all three axes are equivalent, symmetric vibrations have Raman spectral bands which are completely polarized (ρ = 0).

  8. Raman amplification - Wikipedia

    en.wikipedia.org/wiki/Raman_amplification

    Raman amplification / ˈ r ɑː m ən / [1] is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy ...

  9. Coherent Raman scattering microscopy - Wikipedia

    en.wikipedia.org/wiki/Coherent_Raman_scattering...

    Coherent Raman scattering (CRS) microscopy is a multi-photon microscopy technique based on Raman-active vibrational modes of molecules. The two major techniques in CRS microscopy are stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS). SRS and CARS were theoretically predicted and experimentally realized in the 1960s.