Search results
Results from the WOW.Com Content Network
In the former sense, a reagent is added to the substrate to generate a product through a chemical reaction. The term is used in a similar sense in synthetic and organic chemistry, where the substrate is the chemical of interest that is being modified. In biochemistry, an enzyme substrate is the material upon which an enzyme acts.
In biology, a substrate is the surface on which an organism (such as a plant, fungus, or animal) lives.A substrate can include biotic or abiotic materials and animals. For example, encrusting algae that lives on a rock (its substrate) can be itself a substrate for an animal that lives on top of the algae.
In molecular biology, substrate presentation is a biological process that activates a protein. The protein is sequestered away from its substrate and then activated by release and exposure to its substrate. [1] [2] A substrate is typically the substance on which an enzyme acts but can also be a protein surface to which a ligand binds. In the ...
Substrate (vivarium), the material used in the bottom of a vivarium or terrarium; Substrate (aquarium), the material used in the bottom of an aquarium; Substrate (building), natural stone, masonry surface, ceramic and porcelain tiles; Substrate (chemistry), the reactant which is consumed during a catalytic or enzymatic reaction
In biochemistry and molecular genetics, an AP site (apurinic/apyrimidinic site), also known as an abasic site, is a location in DNA (also in RNA but much less likely) that has neither a purine nor a pyrimidine base, either spontaneously or due to DNA damage. It has been estimated that under physiological conditions 10,000 apurinic sites and 500 ...
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site.
Thus a prochiral substrate may be transformed into an optically active product and both enantiomers of a racemic substrate may react at different rates. These reasons, and especially the latter, are the major reasons why synthetic chemists have become interested in biocatalysis.
This article needs attention from an expert in biochemistry.The specific problem is: someone with a solid grasp of the full scope of this subject and of its secondary and advanced teaching literatures needs to address A, the clear structural issues of the article (e.g., general absence of catabolic biosynthetic pathways, insertion of macromolecule anabolic paths before all building blocks ...