enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).

  3. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    A Jablonski diagram showing the excitation of molecule A to its singlet excited state (1 A*) followed by intersystem crossing to the triplet state (3 A) that relaxes to the ground state by phosphorescence. It was used to describe absorption and emission of light by fluorescence.

  4. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]). This is accompanied by the emission of a photon (radiative relaxation/spontaneous emission) or by a transfer of energy to another particle. The energy released is equal to the difference in energy levels between the electron ...

  5. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Any other configuration is an excited state. As an example, the ground state configuration of the sodium atom is 1s 2 2s 2 2p 6 3s 1, as deduced from the Aufbau principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p subshell, to obtain the 1s 2 2s 2 2p 6 3p 1 configuration, abbreviated as the 3p level ...

  6. Franck–Condon principle - Wikipedia

    en.wikipedia.org/wiki/Franck–Condon_principle

    In examining how much vibrational energy a molecule could acquire when it is excited to a higher electronic level, and whether this vibrational energy could be enough to immediately break apart the molecule, he drew three diagrams representing the possible changes in binding energy between the lowest electronic state and higher electronic ...

  7. Quantum algorithm - Wikipedia

    en.wikipedia.org/wiki/Quantum_algorithm

    The variational quantum eigensolver (VQE) algorithm applies classical optimization to minimize the energy expectation value of an ansatz state to find the ground state of a Hermitian operator, such as a molecule's Hamiltonian. [51] It can also be extended to find excited energies of molecular Hamiltonians. [52]

  8. Ramsey interferometry - Wikipedia

    en.wikipedia.org/wiki/Ramsey_interferometry

    A simplified version of the Rabi method consists of a beam of atoms, all having the same speed and the same direction, sent through one interaction zone of length .The atoms are two-level atoms with a transition energy of (this is defined by applying a field ‖ in an excitation direction ^, and thus = | ‖ |, the Larmor frequency), and with an interaction time of = / in the interaction zone.

  9. Triplet-triplet annihilation - Wikipedia

    en.wikipedia.org/wiki/Triplet-Triplet_Annihilation

    A Jablonski diagram describing the mechanism of triplet-triplet annihilation. The energy of the first triplet excited state (T 1) is transferred to a second triplet excited state (T 1), resulting in (1) the first T 1 returning to the singlet ground state S0 and (2) the second T 1 promoting to the singlet excited state (S 1).