Search results
Results from the WOW.Com Content Network
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Visible wavelengths pass largely unattenuated through the Earth's atmosphere via the "optical window" region of the electromagnetic spectrum. An example of this phenomenon is when clean air scatters blue light more than red light, and so the midday sky appears blue (apart from the area around the Sun which appears white because the light is not ...
The Sun emits its peak power in the visible region, although integrating the entire emission power spectrum through all wavelengths shows that the Sun emits slightly more infrared than visible light. [16] By definition, visible light is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light ...
The data and its references can be found in the spreadsheet Commercial laser lines.xls (unfortunately Wikipedia does not allow uploading spreadsheets). Currently most of the data is taken from Weber's book Handbook of laser wavelengths [1], with newer data in particular for semiconductor lasers. For quasi-cw lasers (e.g. metal vapor lasers) the ...
Red (635 nm), blueish violet (445 nm), and green (520 nm) laser pointers. A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. coherent light) to highlight something of interest with a small bright colored spot.
Sufficiently powerful lasers in the visible to near infrared range (400-1400 nm) will penetrate the eyeball and may cause heating of the retina, whereas exposure to laser radiation with wavelengths less than 400 nm or greater than 1400 nm are largely absorbed by the cornea and lens, leading to the development of cataracts or burn injuries. [2]
As the common visible-light laser transitions between electronic or vibrational states correspond to energies up to only about 10 eV, different active media are needed for X-ray lasers. Between 1978 and 1988 in Project Excalibur the U.S. military attempted to develop a nuclear explosion-pumped X-ray laser for ballistic missile defense as part ...
Slit lamp photograph of posterior capsular opacification visible a few months after implantation of intraocular lens in eye, seen on retroillumination. Nd:YAG lasers are used in ophthalmology to correct posterior capsular opacification, [6] after cataract surgery, for peripheral iridotomy in patients with chronic [7] and acute angle-closure glaucoma, [8] where it has largely superseded ...