Search results
Results from the WOW.Com Content Network
The first network is a generative model that models a probability distribution over output patterns. The second network learns by gradient descent to predict the reactions of the environment to these patterns. GANs can be regarded as a case where the environmental reaction is 1 or 0 depending on whether the first network's output is in a given ...
The Wasserstein Generative Adversarial Network (WGAN) is a variant of generative adversarial network (GAN) proposed in 2017 that aims to "improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches".
This image was generated by an artificial neural network based on an analysis of a large number of photographs. The Style Generative Adversarial Network, or StyleGAN for short, is an extension to the GAN architecture introduced by Nvidia researchers in December 2018, [1] and made source available in February 2019. [2] [3]
A generative AI system is constructed by applying unsupervised machine learning (invoking for instance neural network architectures such as generative adversarial networks (GANs), variation autoencoders (VAEs), transformers, or self-supervised machine learning trained on a dataset.
Most attempted methods have involved the use of ANN in some form. Methods include the use of basic feedforward neural networks, autoencoders, restricted boltzmann machines, recurrent neural networks, convolutional neural networks, generative adversarial networks (GANs), and compound architectures that use multiple methods. [34]
An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good performance. [10] Popular DGMs include variational autoencoders (VAEs), generative adversarial networks (GANs), and auto-regressive models.
For the image generation step, conditional generative adversarial networks (GANs) have been commonly used, with diffusion models also becoming a popular option in recent years. Rather than directly training a model to output a high-resolution image conditioned on a text embedding, a popular technique is to train a model to generate low ...
Ian J. Goodfellow (born 1987 [1]) is an American computer scientist, engineer, and executive, most noted for his work on artificial neural networks and deep learning.He is a research scientist at Google DeepMind, [2] was previously employed as a research scientist at Google Brain and director of machine learning at Apple, and has made several important contributions to the field of deep ...