Search results
Results from the WOW.Com Content Network
According to theory, the energy density in matter decreases with the expansion of the universe, but the dark energy density remains constant (or nearly so) as the universe expands. Therefore, matter made up a larger fraction of the total energy of the universe in the past than it does today, but its fractional contribution will fall in the far ...
Light with sufficient energy will ionize neutral hydrogen gas. At early times, light was so dense and energetic that hydrogen gas was immediately ionized. As the universe expanded and cooled, the rate of recombination of electrons and protons to form neutral hydrogen was higher than the ionization rate.
Europa's prime meridian is a line passing through this point. [41] Research suggests that tidal locking may not be full, as a non-synchronous rotation has been proposed: Europa spins faster than it orbits, or at least did so in the past. This suggests an asymmetry in internal mass distribution and that a layer of subsurface liquid separates the ...
French philosopher and mathematician René Descartes was the first to propose a model for the origin of the Solar System in his book The World, written from 1629 to 1633.. In his view, the universe was filled with vortices of swirling particles, and both the Sun and planets had condensed from a large vortex that had contracted, which he thought could explain the circular motion of the plane
A cosmological phase transition is an overall change in the state of matter across the whole universe. The success of the Big Bang model led researchers to conjecture possible cosmological phase transitions taking place in the very early universe, at a time when it was much hotter and denser than today. [1] [2]
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [7] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...
While the “Epoch of Reionization” sounds like the title of a sci-fi novel destined for a Hugo award, this very real era of the universe featured the first light from the very first stars.
Diagram of Evolution of the universe from the Big Bang (left) to the present. The timeline of the universe begins with the Big Bang, 13.799 ± 0.021 billion years ago, [1] and follows the formation and subsequent evolution of the Universe up to the present day. Each era or age of the universe begins with an "epoch", a time of significant change ...