Search results
Results from the WOW.Com Content Network
dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.
Other early handheld calculators with symbolic algebra capabilities included the Texas Instruments TI-89 series and TI-92 calculator, and the Casio CFX-9970G. [2] The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a copyleft version of Macsyma is called Maxima. Reduce became free software in ...
dc (desk calculator) is a cross-platform reverse-Polish calculator which supports arbitrary-precision arithmetic. [1] It was written by Lorinda Cherry and Robert Morris at Bell Labs. [2] It is one of the oldest Unix utilities, preceding even the invention of the C programming language. Like other utilities of that vintage, it has a powerful set ...
Precision Scientific mode RPN mode Hex/oct/bin mode DeskCalc: MIT: Haiku: Arbitrary decimal Yes No No Mac OS calculator: Proprietary: macOS: Double (64 bit) Yes Yes Yes GNOME Calculator: GPL-3.0-or-later: Linux, BSDs, macOS: Arbitrary decimal Yes Yes Yes KCalc: GPL-2.0-or-later: Linux, BSDs, macOS: Arbitrary decimal Yes Yes Yes Windows ...
GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [3] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...
bc first appeared in Version 6 Unix in 1975. It was written by Lorinda Cherry of Bell Labs as a front end to dc, an arbitrary-precision calculator written by Robert Morris and Cherry. dc performed arbitrary-precision computations specified in reverse Polish notation. bc provided a conventional programming-language interface to the same capability via a simple compiler (a single yacc source ...
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.