enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time–frequency representation - Wikipedia

    en.wikipedia.org/wiki/Timefrequency...

    A time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. [1] Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD.

  3. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Timefrequency_analysis

    In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function ...

  4. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system). The frequency transform of a dynamic function is performed over a finite time period of that function and assumes the function repeats infinitely outside of that time period.

  5. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    An example application of the Fourier transform ... called the frequency domain representation of the ... by 90° in the time–frequency domain, ...

  6. Time domain - Wikipedia

    en.wikipedia.org/wiki/Time_domain

    The component frequencies, spread across the frequency spectrum, are represented as peaks in the frequency domain. Time domain refers to the analysis of mathematical functions, physical signals or time series of economic or environmental data, with respect to time. In the time domain, the signal or function's value is known for all real numbers ...

  7. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and ...

  8. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    Relationship between the time domain and the frequency domain. LTI systems can also be characterized in the frequency domain by the system's transfer function, which is the Laplace transform of the system's impulse response (or Z transform in the case of discrete-time systems). As a result of the properties of these transforms, the output of ...

  9. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time.