Search results
Results from the WOW.Com Content Network
Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs (temporal summation).
When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β. Ptolemy's theorem is important in the history of trigonometric identities, as it is how results equivalent to the sum and difference formulas ...
[1] According to temporal summation one would expect the inhibitory and excitatory currents to be summed linearly to describe the resulting current entering the cell. However, when inhibitory and excitatory currents are on the soma of the cell, the inhibitory current causes the cell resistance to change (making the cell "leakier"), thereby ...
Shunting inhibition is theorized to be a type of gain control mechanism, regulating the responses of neurons. [5] [6] Simple inhibition such as hyperpolarization has a subtractive effect on the depolarization caused by concurrent excitation, whereas shunting inhibition can in some cases account for a divisive effect.
The summation of these three EPSPs generates an action potential. In neuroscience , an excitatory postsynaptic potential ( EPSP ) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential .
Summation is the adding together of these impulses at the axon hillock. If the neuron only gets excitatory impulses, it will generate an action potential. If the neuron only gets excitatory impulses, it will generate an action potential.
In classic brain theory the summation of electrical inputs to the dendrites and soma (cell body) of a neuron either inhibit the neuron or excite it and set off an action potential down the axon to where it synapses with the next neuron. However, this fails to account for different varieties of synapses beyond the traditional axodendritic (axon ...
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function