enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.

  4. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    Vertex the (n−5)-face of the 5-polytope; Edge the (n−4)-face of the 5-polytope; Face the peak or (n−3)-face of the 5-polytope; Cell the ridge or (n−2)-face of the 5-polytope; Hypercell or Teron the facet or (n−1)-face of the 5-polytope

  5. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    In this case, {3,5+} 3,0, with frequency = and triangulation number =, each of the four versions of the polygon has 92 vertices (80 where six edges join, and 12 where five join), 270 edges and 180 faces.

  6. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    Star polygons that can only exist as spherical tilings, similarly to the monogon and digon, may exist (for example: {3/2}, {5/3}, {5/4}, {7/4}, {9/5}), however these have not been studied in detail. There also exist failed star polygons, such as the piangle, which do not cover the surface of a circle finitely many times. [8]

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    For a convex polyhedron, or more generally any simply connected polyhedron with surface a topological sphere, it always equals 2. For more complicated shapes, the Euler characteristic relates to the number of toroidal holes, handles or cross-caps in the surface and will be less than 2. [32]

  9. Pentahedron - Wikipedia

    en.wikipedia.org/wiki/Pentahedron

    There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 ( antipodal point ) vertices, 5 edges, and 5 digonal faces.