Search results
Results from the WOW.Com Content Network
One way to check for bias in results after is rerunning analyses with different independent variables to observe whether a given phenomenon still occurs in dependent variables. [17] Careful use of language in reporting can reduce misleading phrases, such as discussion of a result "approaching" statistical significant as compared to actually ...
Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator.
For the variables under examination, analysts typically obtain descriptive statistics for them, such as the mean (average), median, and standard deviation. [61] They may also analyze the distribution of the key variables to see how the individual values cluster around the mean. [62] An illustration of the MECE principle used for data analysis.
A formal data collection process is necessary, as it ensures that the data gathered are both defined and accurate. This way, subsequent decisions based on arguments embodied in the findings are made using valid data. [4] The process provides both a baseline from which to measure and in certain cases an indication of what to improve.
The word statistics ultimately comes from the Latin word Status, meaning "situation" or "condition" in society, which in late Latin adopted the meaning "state". Derived from this, political scientist Gottfried Achenwall, coined the German word statistik (a summary of how things stand).
If not, the null hypothesis is supported (or, more accurately, not rejected), meaning no effect of the independent variable(s) was observed on the dependent variable(s). The result of empirical research using statistical hypothesis testing is never proof. It can only support a hypothesis, reject it, or do neither. These methods yield only ...
Researchers focusing solely on whether their results are statistically significant might report findings that are not substantive [46] and not replicable. [47] [48] There is also a difference between statistical significance and practical significance. A study that is found to be statistically significant may not necessarily be practically ...
Research design refers to the overall strategy utilized to answer research questions. A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1]