enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...

  3. Binomial number - Wikipedia

    en.wikipedia.org/wiki/Binomial_number

    A binomial number is an integer obtained by evaluating a homogeneous polynomial containing two terms, also called a binomial. The form of this binomial is x n ± y n {\displaystyle x^{n}\!\pm y^{n}} , with x > y {\displaystyle x>y} and n > 1 {\displaystyle n>1} .

  4. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by (), while the number of ways to write = + + + where every a i is a nonnegative integer is ...

  5. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  6. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    The solution to this particular problem is given by the binomial coefficient (+), which is the number of subsets of size k − 1 that can be formed from a set of size n + k − 1. If, for example, there are two balls and three bins, then the number of ways of placing the balls is ( 2 + 3 − 1 3 − 1 ) = ( 4 2 ) = 6 {\displaystyle {\tbinom {2 ...

  7. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  8. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    In statistical mechanics and combinatorics, if one has a number distribution of labels, then the multinomial coefficients naturally arise from the binomial coefficients. Given a number distribution {n i} on a set of N total items, n i represents the number of items to be given the label i. (In statistical mechanics i is the label of the energy ...

  9. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.