Search results
Results from the WOW.Com Content Network
Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates.
In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.
In laser science, the beam parameter product (BPP) is the product of a laser beam's divergence angle (half-angle) and the radius of the beam at its narrowest point (the beam waist). [1] The BPP quantifies the quality of a laser beam, and how well it can be focused to a small spot.
The Canadian Welding Bureau, through CSA Standards W47.1, [3] W47.2 [4] and W186, [5] specifies both a WPS and a Welding Procedure Data Sheet (WPDS) to provide direction to the welding supervisor, welders and welding operators. The WPS provides general information on the welding process and material grouping being welded, while the WPDS ...
Direct laser welding of polymers. Similar to laser welding of metals, in direct laser welding the surface of the polymer is heated to create a melt zone that joins two components together. This approach can be used to create butt joints and lap joints with complete penetration. Laser wavelengths between 2 and 10.6 μm are used for this process ...
Laser guided and stabilized welding (LGS-welding) is a process in which a laser beam irradiates an electrical heated plasma arc to set a path of increased conductivity. Therefore, the arc's energy can be spatial directed and the plasma burns more stable.
Laser welding of advanced thermoplastic composites is a process by which the LASER (Light Amplification of Simulated Emission of electromagnetic Radiation), a highly focused coherent beam of light melts the composite tin various ways. Taking advantage of joint design and material properties, lasers can be applied either directly or indirectly ...
There are three main types of hybrid welding process, depending on the arc used: TIG, plasma arc or MIG augmented laser welding. While TIG-augmented laser welding was the first to be researched, MIG is the first to go into industry and is commonly known as hybrid laser welding. Whereas in the early days laser sources still had to prove their ...