enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital. gcd( m , n ) ( greatest common divisor of m and n ) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n ).

  3. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of a number is smaller than or equal to the number itself, with equality only when the number is zero. For base b {\displaystyle b} and natural numbers k {\displaystyle k} and n > 9 {\displaystyle n>9} the numbers n {\displaystyle n} and n ⋅ b k {\displaystyle n\cdot b^{k}} have the same additive persistence.

  4. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. [2] [3] The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8.

  5. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).

  6. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Graph of the number of primes ending in 1, 3, 7, and 9 up to n for n < 10 000 Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9.

  7. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    In prime factorization, the multiplicity of a prime factor is its -adic valuation.For example, the prime factorization of the integer 60 is . 60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1.

  8. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);

  9. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.It is denoted ().Equivalently, () is the exponent to which appears in the prime factorization of .