enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...

  4. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    Any curve that differs from the geodesic purely spatially (i.e. does not change the time coordinate) in any inertial frame of reference will have a longer proper length than the geodesic, but a curve that differs from the geodesic purely temporally (i.e. does not change the space coordinates) in such a frame of reference will have a shorter ...

  5. Curved space - Wikipedia

    en.wikipedia.org/wiki/Curved_space

    The surface of a sphere can be completely described by two dimensions, since no matter how rough the surface may appear to be, it is still only a surface, which is the two-dimensional outside border of a volume. Even the surface of the Earth, which is fractal in complexity, is still only a two-dimensional boundary along the outside of a volume. [3]

  6. Murnaghan equation of state - Wikipedia

    en.wikipedia.org/wiki/Murnaghan_equation_of_state

    In practice, the Murnaghan equation is used to perform a regression on a data set, where one gets the values of the coefficients K 0 and K ' 0. These coefficients obtained, and knowing the value of the volume to ambient conditions, then we are in principle able to calculate the volume, density and bulk modulus for any pressure.

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  8. Congruence (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(general...

    In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere vanishing) vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.

  9. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...