Search results
Results from the WOW.Com Content Network
A system of equations is a set of simultaneous equations, usually in several unknowns for which the common solutions are sought. Thus, a solution to the system is a set of values for each of the unknowns, which together form a solution to each equation in the system. For example, the system
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0 , the line is the graph of the function of x that has been defined in the preceding section.
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -8..." In logic, the extension of a predicate is the set of all things for which the predicate is true. [48]
The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term. [2] The values of x that satisfy the equation are called solutions of the equation, and roots or zeros of the quadratic function on its ...
For example, the gamma function is a function that satisfies the functional equation (+) = and the initial value () = There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive ( Bohr–Mollerup theorem ).
On the other hand, by definition, any nonzero vector that satisfies this condition is an eigenvector of A associated with λ. So, the set E is the union of the zero vector with the set of all eigenvectors of A associated with λ, and E equals the nullspace of (A − λI). E is called the eigenspace or characteristic space of A associated with λ.
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...