Ad
related to: exponents and powers class 8 ncert pdf science exerciseeducation.com has been visited by 100K+ users in the past month
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Lesson Plans
Search results
Results from the WOW.Com Content Network
Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.
Exponentiation for a natural power is defined as iterated multiplication, which Knuth denoted by a single up-arrow: a ↑ b = H 3 ( a , b ) = a b = a × a × ⋯ × a ⏟ b copies of a {\displaystyle {\begin{matrix}a\uparrow b=H_{3}(a,b)=a^{b}=&\underbrace {a\times a\times \dots \times a} \\&b{\mbox{ copies of }}a\end{matrix}}}
Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
Every positive integer can be expressed as the sum of at most 19 fourth powers; every integer larger than 13792 can be expressed as the sum of at most 16 fourth powers (see Waring's problem). Fermat knew that a fourth power cannot be the sum of two other fourth powers (the n = 4 case of Fermat's Last Theorem; see Fermat's right triangle theorem).
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7 1, 9 = 3 2 and 64 = 2 6 are prime powers, while 6 = 2 × 3, 12 = 2 2 × 3 and 36 = 6 2 = 2 2 × 3 2 are not. The sequence of prime powers begins:
Ad
related to: exponents and powers class 8 ncert pdf science exerciseeducation.com has been visited by 100K+ users in the past month