Search results
Results from the WOW.Com Content Network
Jun-ichi Ueda and Yoshiro Sadamoto have found [1] that as increases beyond , the effective mass of a spring in a vertical spring-mass system becomes smaller than Rayleigh's value and eventually reaches negative values at about . This unexpected behavior of the effective mass can be explained in terms of the elastic after-effect (which is the ...
In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]
In the spring-mass system, oscillations occur because, at the static equilibrium displacement, the mass has kinetic energy which is converted into potential energy stored in the spring at the extremes of its path. The spring-mass system illustrates some common features of oscillation, namely the existence of an equilibrium and the presence of a ...
For example, calculating the FRF for a mass–spring–damper system with a mass of 1 kg, spring stiffness of 1.93 N/mm and a damping ratio of 0.1. The values of the spring and mass give a natural frequency of 7 Hz for this specific system. Applying the 1 Hz square wave from earlier allows the calculation of the predicted vibration of the mass.
A Wilberforce pendulum can be designed by approximately equating the frequency of harmonic oscillations of the spring-mass oscillator f T, which is dependent on the spring constant k of the spring and the mass m of the system, and the frequency of the rotating oscillator f R, which is dependent on the moment of inertia I and the torsional ...
In a mass–spring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as: = In an electrical network , ω is a natural angular frequency of a response function f ( t ) if the Laplace transform F ( s ) of f ( t ) includes the term Ke − st , where s = σ + ω i for a real σ , and K ≠ 0 is a constant ...
where m is the mass and k is the spring constant. For a given mass, stiffening the system (increasing ) increases its natural frequency, which is a general characteristic of vibrating mechanical systems. A swing set is another simple example of a resonant system with which most people have practical experience. It is a form of pendulum.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: T = 2 π m k {\displaystyle T=2\pi {\sqrt {\frac {m}{k}}}} shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small.