Search results
Results from the WOW.Com Content Network
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
First edition. Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes KÅ‘nig.
The theorem was first stated by Ibn al-Haytham c. 1000 AD. [2] Edward Waring announced the theorem in 1770 without proving it, crediting his student John Wilson for the discovery. [3] Lagrange gave the first proof in 1771. [4] There is evidence that Leibniz was also aware of the result a century earlier, but never published it. [5]
Euclid–Euler theorem (number theory) Euler's partition theorem (number theory) Euler's polyhedron theorem ; Euler's quadrilateral theorem ; Euler's rotation theorem ; Euler's theorem (differential geometry) Euler's theorem (number theory) Euler's theorem in geometry (triangle geometry)
This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree.
Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive. For example, φ(4) = 2 ...
Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to the Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n.
[2] [3] Cramer and Leonhard Euler corresponded on the paradox in letters of 1744 and 1745 and Euler explained the problem to Cramer. [4] It has become known as Cramer's paradox after featuring in his 1750 book Introduction à l'analyse des lignes courbes algébriques, although Cramer quoted Maclaurin as the source of the statement. [5]