Search results
Results from the WOW.Com Content Network
For a plane given by the general form plane equation + + + =, the vector = (,,) is a normal. For a plane whose equation is given in parametric form (,) = + +, where is a point on the plane and , are non-parallel vectors pointing along the plane, a normal to the plane is a vector normal to both and , which can be found as the cross product =.
The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...
The normal section of a surface at a particular point is the curve produced by the intersection of that surface with a normal plane. [1] [2] [3] The curvature of the normal section is called the normal curvature. If the surface is bow or cylinder shaped, the maximum and the minimum of these curvatures are the principal curvatures.
Conversely, it is easily shown that if a, b, c and d are constants and a, b, and c are not all zero, then the graph of the equation + + + =, is a plane having the vector = (,,) as a normal. [ citation needed ] This familiar equation for a plane is called the general form of the equation of the plane.
However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self-intersections). If the defining relations are sufficiently smooth then, in such regions, implicit curves have well defined slopes, tangent lines, normal vectors, and curvature.
In mathematics it is a common convention to express the normal as a unit vector, but the above argument holds for a normal vector of any non-zero length. Conversely, it is easily shown that if a , b , c , and d are constants and a , b , and c are not all zero, then the graph of the equation a x + b y + c z + d = 0 , {\displaystyle ax+by+cz+d=0 ...
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
The reflected ray has the normal vector (see diagram) = (, ) and containing circle point : (, ). Hence the reflected ray is part of the line with equation Hence the reflected ray is part of the line with equation