Search results
Results from the WOW.Com Content Network
Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)
Few-shot learning [ edit ] A prompt may include a few examples for a model to learn from, such as asking the model to complete " maison → house, chat → cat, chien →" (the expected response being dog ), [ 33 ] an approach called few-shot learning .
GPT-3 is capable of performing zero-shot and few-shot learning (including one-shot). [ 1 ] In June 2022, Almira Osmanovic Thunström wrote that GPT-3 was the primary author on an article on itself, that they had submitted it for publication, [ 24 ] and that it had been pre-published while waiting for completion of its review.
CLIP has been used as a component in multimodal learning. For example, during the training of Google DeepMind's Flamingo (2022), [33] the authors trained a CLIP pair, with BERT as the text encoder and NormalizerFree ResNet F6 [34] as the image encoder. The image encoder of the CLIP pair was taken with parameters frozen and the text encoder was ...
Since curriculum learning only concerns the selection and ordering of training data, it can be combined with many other techniques in machine learning. The success of the method assumes that a model trained for an easier version of the problem can generalize to harder versions, so it can be seen as a form of transfer learning .
The design has its origins from pre-training contextual representations, including semi-supervised sequence learning, [23] generative pre-training, ELMo, [24] and ULMFit. [25] Unlike previous models, BERT is a deeply bidirectional, unsupervised language representation, pre-trained using only a plain text corpus .
The Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on Foundation Models (CRFM) coined the term "foundation model" in August 2021 [16] to mean "any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks". [17]
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.