enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc. The solution of such an equation is a function of t, and not of any iterate values, giving the value of the iterate at any time.

  3. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  4. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on .

  5. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The order of the sequence is the smallest positive integer such that the sequence satisfies a recurrence of order d, or = for the everywhere-zero sequence. [ citation needed ] The definition above allows eventually- periodic sequences such as 1 , 0 , 0 , 0 , … {\displaystyle 1,0,0,0,\ldots } and 0 , 1 , 0 , 0 , … {\displaystyle 0,1,0,0 ...

  6. P-recursive equation - Wikipedia

    en.wikipedia.org/wiki/P-recursive_equation

    A sequence () is called hypergeometric if the ratio of two consecutive terms is a rational function in , i.e. (+) / (). This is the case if and only if the sequence is the solution of a first-order recurrence equation with polynomial coefficients.

  7. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    The next approximation x k is now one of the roots of the p k,m, i.e. one of the solutions of p k,m (x)=0. Taking m =1 we obtain the secant method whereas m =2 gives Muller's method. Muller calculated that the sequence { x k } generated this way converges to the root ξ with an order μ m where μ m is the positive solution of x m + 1 − x m ...

  8. Combinatorial principles - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_principles

    The rule of sum is an intuitive principle stating that if there are a possible outcomes for an event (or ways to do something) and b possible outcomes for another event (or ways to do another thing), and the two events cannot both occur (or the two things can't both be done), then there are a + b total possible outcomes for the events (or total possible ways to do one of the things).

  9. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    As there is zero X n+1 or X −1 in (1 + X) n, one might extend the definition beyond the above boundaries to include () = when either k > n or k < 0. This recursive formula then allows the construction of Pascal's triangle , surrounded by white spaces where the zeros, or the trivial coefficients, would be.