enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    It has octahedral rotation symmetry : three axes pass through the cube's opposite faces centroid, six through the cube's opposite edges midpoints, and four through the cube's opposite vertices; each of these axes is respectively four-fold rotational symmetry (0°, 90°, 180°, and 270°), two-fold rotational symmetry (0° and 180°), and three ...

  3. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  4. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron , the dual to a cube, has the ƒ-vector (6,12,8).

  5. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.

  6. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The name crystal pyrite comes from one of the two common crystal habits shown by pyrite (the other one being the cube). In pyritohedral pyrite, the faces have a Miller index of (210), which means that the dihedral angle is 2·arctan(2) ≈ 126.87° and each pentagonal face has one angle of approximately 121.6° in between two angles of ...

  7. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The regular complex polytope 4 {4} 2, , in has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 4 {4} 2 has 16 vertices, and 8 4-edges. Its symmetry is 4 [4] 2, order 32. It also has a lower symmetry construction, , or 4 {}× 4 {}, with symmetry 4 [2] 4, order 16. This is the symmetry if the red and blue 4-edges are ...

  8. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    [3] [c] In the case that all six faces are squares, the result is a cube. [4] If a rectangular cuboid has length , width , and height , then: [5] its volume is the product of the rectangular area and its height: =. its surface area is the sum of the area of all faces: = (+ +).

  9. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    These two tetrahedra's vertices combined are the vertices of a cube, demonstrating that the regular tetrahedron is the 3-demicube, a polyhedron that is by alternating a cube. This form has Coxeter diagram and Schläfli symbol h { 4 , 3 } {\displaystyle \mathrm {h} \{4,3\}} .

  1. Related searches how many faces does a cube have how many vertices and bases are located

    geometry of a cubegeometry of faces
    how many faces are therecube geometry examples