Search results
Results from the WOW.Com Content Network
Phenylboronic acid participates in numerous cross coupling reactions where it serves as a source of a phenyl group. One example is the Suzuki reaction where, in the presence of a Pd(0) catalyst and base, phenylboronic acid and vinyl halides are coupled to produce phenyl alkenes . [ 7 ]
Protodeboronation is a chemical reaction involving the protonolysis of a boronic acid (or other organoborane compound) in which a carbon-boron bond is broken and replaced with a carbon-hydrogen bond. Protodeboronation is a well-known undesired side reaction , and frequently associated with metal-catalysed coupling reactions that utilise boronic ...
Hydrogen peroxide (H 2 O 2) can be used as HOCl scavenger whose byproducts do not interfere in the Pinnick oxidation reaction: HOCl + H 2 O 2 → HCl + O 2 + H 2 O In a weakly acidic condition, fairly concentrated (35%) H 2 O 2 solution undergoes a rapid oxidative reaction with no competitive reduction reaction of HClO 2 to form HOCl.
The hydrogen is dangerous and could ignite with the oxygen in the air, so the chemical procedure should be done in an inert atmosphere (e.g., nitrogen). Deprotonation can be an important step in a chemical reaction. Acid–base reactions typically occur faster than any other step which may determine the product of a reaction. The conjugate base ...
They reported the reaction of phenylboronic acid in water (140-150 °C) to afford the protodeboronated product, benzene, after 40 hours. Initial synthetic applications of protodeboronation were found alongside the discovery of the hydroboration reaction, in which sequential hydroboration-protodeboronation reactions were used to convert alkynes ...
Heterogeneous OER is sensitive to the surface which the reaction takes place and is also affected by the pH of the solution. The general mechanism for acidic and alkaline solutions is shown below. Under acidic conditions water binds to the surface with the irreversible removal of one electron and one proton to form a platinum hydroxide. [4]
The reaction, using H 2 O 2 for the formation of ·OH, is carried out in an acidic medium (2.5-4.5 pH) [9] and a low temperature (30 °C - 50 °C), [10] in a safe and efficient way, using optimized catalyst and hydrogen peroxide formulations.
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.