enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    The NAG Library contains several routines [10] for minimizing or maximizing a function [11] which use quasi-Newton algorithms. In MATLAB's Optimization Toolbox, the fminunc function uses (among other methods) the BFGS quasi-Newton method. [12] Many of the constrained methods of the Optimization toolbox use BFGS and the variant L-BFGS. [13]

  3. Talk:Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Talk:Quasi-Newton_method

    I propose a compromise step of moving the code to the talk page for now. Lavaka 13:29, 7 March 2012 (UTC) I am posting that code here: Lavaka 13:34, 7 March 2012 (UTC) Here is a Matlab example which uses the BFGS method.

  4. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The popular modifications of Newton's method, such as quasi-Newton methods or Levenberg-Marquardt algorithm mentioned above, also have caveats: For example, it is usually required that the cost function is (strongly) convex and the Hessian is globally bounded or Lipschitz continuous, for example this is mentioned in the section "Convergence" in ...

  5. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    The line-search method first finds a descent direction along which the objective function will be reduced, and then computes a step size that determines how far should move along that direction. The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either ...

  6. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    It was the first quasi-Newton method to generalize the secant method to a multidimensional problem. This update maintains the symmetry and positive definiteness of the Hessian matrix . Given a function f ( x ) {\displaystyle f(x)} , its gradient ( ∇ f {\displaystyle \nabla f} ), and positive-definite Hessian matrix B {\displaystyle B} , the ...

  7. Symmetric rank-one - Wikipedia

    en.wikipedia.org/wiki/Symmetric_rank-one

    The Symmetric Rank 1 (SR1) method is a quasi-Newton method to update the second derivative (Hessian) based on the derivatives (gradients) calculated at two points. It is a generalization to the secant method for a multidimensional problem.

  8. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    L-BFGS shares many features with other quasi-Newton algorithms, but is very different in how the matrix-vector multiplication = is carried out, where is the approximate Newton's direction, is the current gradient, and is the inverse of the Hessian matrix. There are multiple published approaches using a history of updates to form this direction ...

  9. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.