enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Other methods that can be used are the column-updating method, the inverse column-updating method, the quasi-Newton least squares method and the quasi-Newton inverse least squares method. More recently quasi-Newton methods have been applied to find the solution of multiple coupled systems of equations (e.g. fluid–structure interaction ...

  3. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    It was the first quasi-Newton method to generalize the secant method to a multidimensional problem. This update maintains the symmetry and positive definiteness of the Hessian matrix . Given a function f ( x ) {\displaystyle f(x)} , its gradient ( ∇ f {\displaystyle \nabla f} ), and positive-definite Hessian matrix B {\displaystyle B} , the ...

  4. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The popular modifications of Newton's method, such as quasi-Newton methods or Levenberg-Marquardt algorithm mentioned above, also have caveats: For example, it is usually required that the cost function is (strongly) convex and the Hessian is globally bounded or Lipschitz continuous, for example this is mentioned in the section "Convergence" in ...

  5. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.

  6. Symmetric rank-one - Wikipedia

    en.wikipedia.org/wiki/Symmetric_rank-one

    The Symmetric Rank 1 (SR1) method is a quasi-Newton method to update the second derivative (Hessian) based on the derivatives (gradients) calculated at two points. It is a generalization to the secant method for a multidimensional problem.

  7. Wolfe conditions - Wikipedia

    en.wikipedia.org/wiki/Wolfe_conditions

    The principal reason for imposing the Wolfe conditions in an optimization algorithm where + = + is to ensure convergence of the gradient to zero. In particular, if the cosine of the angle between and the gradient, ⁡ = ‖ ‖ ‖ ‖ is bounded away from zero and the i) and ii) conditions hold, then ().

  8. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    The line-search method first finds a descent direction along which the objective function will be reduced, and then computes a step size that determines how far should move along that direction. The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either ...

  9. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    In a quasi-Newton method, such as that due to Davidon, Fletcher and Powell or Broyden–Fletcher–Goldfarb–Shanno (BFGS method) an estimate of the full Hessian is built up numerically using first derivatives only so that after n refinement cycles the method closely approximates to Newton's method in performance. Note that quasi-Newton ...